
From random block corruption to privilege escalation:
A filesystem attack vector for rowhammer-like attacks

Anil Kurmus Nikolas Ioannou Matthias Neugschwandtner Nikolaos Papandreou
Thomas Parnell

IBM Research – Zurich

Abstract
Rowhammer demonstrated that non-physical hardware-
weakness-based attacks can be devastating. In a recent
paper, Cai et al. [2] propose that similar attacks can be
performed on MLC NAND flash. In this paper, we dis-
cuss the requirements for a successful, full-system, lo-
cal privilege escalation attack on such media, and show
a filesystem based attack vector. We demonstrate the
filesystem layer of this attack, showing that a random
block corruption of a carefully chosen block is sufficient
to achieve privilege escalation. In particular, to motivate
the assumptions of this filesystem-level attack, we show
the attack primitive that an attacker can obtain by making
use of cell-to-cell interference is quite weak, and there-
fore requires a carefully crafted attack at the OS layer for
successful exploitation.

1 Introduction

When developing software, hardware aspects are typically
abstracted and security primitives such as resource isola-
tion are taken for granted. In short, modern-day software
programming requires little knowledge of the intricacies
of the underlying hardware. It took rowhammer [10, 19]
to bring back the inner workings of hardware to our at-
tention. Rowhammer exploits a weakness in the deeper
layers of memory management to corrupt sensitive mem-
ory regions. Recent work has demonstrated how such a
non-obvious, complex vulnerability can be exploited to
inject faults through Javascript [8], achieve privilege esca-
lation on mobile phones [22], or compromise co-hosted
VMs [17].

However, DRAM is not the only place that holds sensi-
tive data that is essential to the correct working of security
primitives implemented in software. Persistent storage,
organized by means of a file system, grants access to data
based on metadata that is stored on disk. In modern-day
computers, flash memory has largely replaced spinning
disk as the prime persistent storage medium.

Based on a recently published paper by Cai et al. [2]
that proposes that rowhammer-like attacks are possible on
SSDs but does not present an actual attack, we investigate
the feasibility of such attacks on SSDs from the system
point of view. In particular, we show that under realistic
assumptions on the Flash device behavior and filesys-
tem used, it is possible (albeit challenging) to mount a
local privilege escalation attack by leveraging Flash weak-
nesses. The attack we demonstrate is not “full-system”,
in the sense that we only demonstrate the filesystem-layer
of the attack and assume that a corruption of the underly-
ing Flash media is possible. However, we also describe
how the attack could be extended to a full-system attack,
which we intend to demonstrate in future work.

More precisely, we use our knowledge of existing re-
liability mechanisms in SSDs (including ECC), to show
that the attack primitive an attacker can obtain from MLC
NAND flash weaknesses is a coarse granularity corrup-
tion: unlike in rowhammer, where the attacker can flip a
single bit, in the case of this attack the attacker can only
corrupt one block of data. We then show that this weaker
attack primitive (when compared to flipping individual
bits, which provides a higher level of control to the at-
tacker) is nevertheless sufficient to mount a local privilege
escalation attack.

Threat model We assume that the victim system runs
a filesystem on top of MLC NAND flash-based SSD.
We assume that an attacker has unprivileged, i.e. non-
root access to the victim system. This access enables
the attacker to cause controlled write accesses to system
storage, through the filesystem. A typical scenario would
be a login shell for an unprivileged user. We do not
assume physical access to the victim system.

Contributions The main contributions of this paper
are summarized as follows.

• We detail for the first time how a full system, flash-
weakness-based, local privilege escalation attack can
be mounted.



• We implement and demonstrate the filesystem level
part of this attack.

• We discuss possible generalizations and limitations
of the attack.

2 Background and Related Work

2.1 Hardware-based attacks
Table 1 shows a categorization of hardware-based attacks.
Foremost, we distinguish between two main categories:
physical and non-physical attacks. For a physical attack,
direct access to the hardware of a system is required. Ex-
amples for such attacks are probing of voltage levels or
scraping layers off a silicon chip to reverse-engineer its
logic. Less involved examples make use of coolant spray
and cold boot to disclose sensitive information from a
system’s memory banks. On the other hand, non-physical
attacks still exploit the hardware of a system, but do not
require direct access and are thus potentially more pow-
erful. For example, timing side-channel attacks can be
carried out remotely against servers in the cloud.

On an orthogonal level, we distinguish between attacks
that compromise confidentiality and integrity of a system.
Attacks that compromise confidentiality typically require
a read primitive to disclose sensitive information, such as
key material in a cache side-channel attack. On the other
hand, attacks on system integrity require a write primi-
tive to actively modify and corrupt aspects of a system to
change its behavior. A very prominent example is dram-
mer [22], which uses the rowhammer [10, 19] memory
write primitive to perform a privilege escalation attack on
Android.

The attack shown in this paper falls into the same cate-
gory of non-physical hardware-based integrity attacks.

2.2 Flash weaknesses
MLC NAND Flash exhibits reliability issues related to
medium and device characteristics. First, repeated pro-
gram erase (P/E) cycles on MLC NAND Flash stress the
device and gradually deteriorate its reliability [23]. Sec-
ond, cell-to-cell interference (CCI) is another detrimental
effect that takes place during Flash page programming
and affects the reliability of NAND devices. The pro-
gramming voltages applied to the cells of a page that
is currently being programmed introduce interference
to the cells of the adjacent pages due to capacitive cou-
pling between neighboring cells in the memory array [12].
Third, threshold voltage instabilities due to repeated cy-
cles of read-only operations can also cause disturbance
that results in a significant increase in the number of bit
errors [21]. Fourth, it has been shown recently that on

partially programmed blocks of MLC NAND that are
exposed to a large number of reads before it is finalized
in terms of page programming, the remaining pages will
exhibit a significant bit error rate increase [14].

An attacker could exploit CCI to alter the information
in a victim flash page. This can be achieved by pro-
gramming an adjacent aggressor page with special data
patterns that produce maximum interference to the victim
flash page. Due to the nature of the CCI there are only
a few cell state transitions that are possible. Specifically,
CCI can cause a cell state to transition only to a larger
threshold voltage. Using CCI, an attacker can program an
aggressor page with a maximum interference pattern to
cause uncontrolled random modification to all or different
fields of cells of the adjacent victim page in a probabilistic
manner.

2.3 Flash reliability measures

At the flash controller level, two mechanisms are used
to increase reliability: scrambling and error correcting
codes (ECC). Because some bit patterns are more likely
to cause errors, data is not written as-is, but encoded by a
scrambler to make such errors less likely [20]. Typically,
the data is simple XOR’ed with a bit pattern that is a
function of the block address.

Regarding ECC, the data written to a flash page is en-
coded: redundant bits are added to the user data to ensure
that errors present in the binary sequence that is read from
Flash can be corrected by decoding. The length of a code-
word used in Flash storage systems typically ranges from
512B to 2KB. While the two most widely used codes are
Bose–Chaudhuri–Hocquenghem (BCH) codes and low
density parity check (LDPC) codes, the precise details of
the code design are manufacturer-specific.

3 Full-system attack

A full-system attack gaining local privilege escalation that
uses a flash weakness needs to tackle multiple challenges
at different layers of the storage hierarchy. Namely, from
the lowest layer to the highest:

1. Flash chip: cell-to-cell interference.

2. Flash controller: scrambler and ECC bypass.

3. SSD Controller: wear leveling and block placement
algorithm.

4. OS: filesystem caching and error detection bypass.

5. User: privilege escalation payload.



Confidentiality Integrity

Physical Power analysis [11], Cold-boot [9] Evil maid [18], device “rooting” [13]
Non-physical Side channels [4, 6, 7] Rowhammer [10, 19, 22], this attack

Table 1: Categorization of hardware-based attacks, with some examples.

Layer 1 is the basis of the attack. As explained in
Section 2, previous work has demonstrated that it is pos-
sible to cause bit flips in flash pages with specific access
patterns, in particular using cell-to-cell interference.

The Flash community has long known and studied
NAND errors, and, in the context of reliability concern
for SSDs, manufacturers designed the flash and SSD con-
trollers to make such errors unlikely to occur in practice.
In essence, layers 2 and 3 aim to provide to the OS the
abstraction of a block device with no reliability issues,
and with perfect isolation of accesses at the addressing
granularity of the storage device. As often in systems
security, this abstraction can be shown to be leaky. We ex-
plain next what attack primitives the attacker may obtain
from this leaky abstraction.

The remaining challenge (layers 4 to 5) consists es-
sentially in finding a filesystem based attack vector that
leverages this weak attack primitive, which is the main
contribution of this paper. The general idea of the attack
is to cause corruption of a filesystem data structure and
to prepare the filesystem and choose the structure in such
a way that the corruption is likely to result in a privilege
escalating condition (in this case, creating a SUID-root
shell binary).

We have explored multiple possibilities, and present in
Section 4 the best attack (in terms of success probability)
we found.

3.1 Attack primitives
The presence of ECC encoding/decoding in the system
dictates that the best an attacker can hope for is an uncon-
trolled random modification of flash page/block primitive.
To understand this, let us consider the different decoding
events that an attack may be able to cause by injecting
raw bit errors into a Flash page. We will assume that the
user data has been protected using a BCH code capable
of correcting up to t bit errors within its codeword (C1).
The value t is typically quite high (e.g., t = 50). When
introducing errors, there are three possible events that can
be induced:

1. Decoding success. This event is guaranteed to occur
if the number of errors introduced is less than or
equal to t.

2. Detected decoding failure. This event will occur if

C1

C2

Detected 
decoding failure

Undetected
decoding failure

Decoding success

!-error decoding radius of C1

≤ ! errors

> ! errors

> ! errors

!-error decoding radius of C2

Figure 1: The three possible decoding events that can be
induced by injecting errors into a Flash codeword (C1).

the number of injected errors is strictly greater than
t and the resulting binary vector does not fall within
the decoding radius of another codeword. Typically,
a read failure will be reported by the system which
will be handled accordingly by the OS.

3. Undetected decoding failure. This event occurs
when the number of injected errors is strictly greater
than t and the resulting vector falls within the decod-
ing radius of another codeword (C2). If this event
occurs, no read failure will be reported and corrupt
data will be returned to the user as if the read was
successful.

The three different types of induced decoding events are
illustrated in Figure 1. Clearly, a successful attack can
only exploit the undetected decoding failure event. There-
fore, the attacker must inject enough errors to push the
raw read-back pattern into the decoding radius of an in-
correct codeword. In this manner, it is possible to cause
true data corruption but controlling the pattern of this
corruption down to the bit level is not possible. The set of
corrupted patterns that can be induced is determined by
the number of incorrect codewords that are reachable by
flipping bits in the written pattern via the CCI mechanism
or otherwise.

To contextualize and summarize this, possible attack
primitives, from strongest to weakest, may be:

• P1: flip of single bit at controlled location



• P2: uncontrolled flip of single bit within block

• P3: uncontrolled random modification of the block
(high number of bits flipped, leading to undetectable
decoding failure)

• P4: corrupt one block (read error for this block)

With rowhammer on DRAM primitives P1 or P2 are
obtained, but because of the strong ECC protection, the
primitives P1 and P2 are highly unlikely to be achievable
here. Primitive P4 is highly unlikely to be usable for a
privilege escalation exploit (as a side note, the read disturb
attack described by Kim et al. [10] may in fact only result
in such a primitive, due to ECC). We focus our attack on
the third primitive, which is therefore the only one likely
to result in a successful attack.

Flash Translation Layer (FTL) operations, like wear
leveling and garbage collection (GC) induced flash page
writes, as well as the block placement algorithm have to
be taken into consideration when implementing an attack.
Traditionally, the FTL performs wear leveling in an at-
tempt to equalize the P/E cycle counts across blocks [5].
Since wear leveling is typically an infrequent operation,
the attacker can mitigate potential interference to their
attack by repeating the attack vector many times. FTL
GC write operations, on the other hand, can potentially be
a multiple of the user writes [1, 3] in a steady state write
workload, and hence comprise a significant fraction of the
total flash page writes. In order to avoid interference from
GC write operations on an attack, the attacker can wait
enough time (typically a few 10s of seconds) for the GC
operations to settle before the attack commences. This
is possible because SSDs typically prepare a number of
empty blocks while idle to sustain a burst of user writes.

In order to maximize parallelism at the Flash chip level,
SSDs usually employ block placement algorithms that
dynamically map incoming writes to different Flash chips
(e.g., in a round-robin fashion). These block placement
algorithms can impede an attacker’s efforts, since an ag-
gressor page write happening immediately after a victim
page write, might not happen at the same Flash block as
the victim page. To mitigate this obstacle, an attacker
should repeat the aggressor page write enough times to
eventually reach the same Flash block as the victim page.

3.2 Testbed
Our testbed, depicted in Figure 2, comprises a PCIe Flash
development board with FPGA, DRAM, general purpose
CPU, and MLC NAND Flash chips. NAND Flash pro-
gramming, the data scrambler, and the error correction
code (ECC) are fully implemented in the FPGA. The FTL
runs on the FPGA and the CPU. The development board
is connected to an x86-64 server running RHEL 6.7. We

Figure 2: Evaluation testbed: green, red, and blue PCBs
are the server motherboard, Gateway and CPU board, and
FPGA and NAND Flash board, respectively.

have total control over the hardware and software stack
that runs on the development board, as well as the Linux
device driver that talks to the device.

The MLC NAND chips used in our testbed have been
characterized in prior work in terms of reliability [14,
15, 16]. In the context of this work, the testbed has been
used to validate our understanding of MLC NAND flash
behavior.

4 Filesystem-level attack

We now describe in detail the filesystem-related parts of
the attack (layers 4 to 5). A video demonstrating this
local privilege escalation attack is available at https:
//www.youtube.com/watch?v=Mnzp1p9Nvw0.

A successful attack needs to satisfy the following con-
straints:

• R1: The data corruption of the target block should
have no (or low) probability of resulting in a fatal
filesystem error that would stop the attack and re-
quire administrator intervention.

• R2: The corruption target should be a block that is
written often (in order to have a greater chance of
success). Ideally, the write should be triggered by
the attacker. This is to allow timing this filesystem
attack with the layers 1 to 3 of the attack.

• R3: The data corruption of the target block should
have a sufficient probability of creating an ex-
ploitable condition.

• R4: The cache should be flushed to force the OS to
access corrupted data from the flash disk.

https://www.youtube.com/watch?v=Mnzp1p9Nvw0
https://www.youtube.com/watch?v=Mnzp1p9Nvw0


4.1 Assumptions and Setup
We implemented the attack on Linux with the ext3 filesys-
tem, mounted with default mount options. The filesystem
does not need to be the root filesystem.

We discuss in Section 5 to what extent these assump-
tions can be relaxed and generalized.

4.2 Attack
With the constraints of the attack in mind, we have chosen
to target indirect blocks (as victim blocks).

An ext3 indirect block is a filesystem-block-size area
containing data block pointers, each 4 byte in size. There-
fore, on a 4K-block-size filesystem, an indirect block
contains 1024 data block pointers (the data blocks contain
file contents).

An indirect block is written (by the kernel filesystem
driver) as soon as a file becomes larger than 12 blocks in
size: this write is therefore very easy to time and trigger
for the attacker.

If the lower layer (layers 1 to 3) of the attack is suc-
cessful, an indirect block is corrupted, with three possible
outcomes for each of the 1024 data pointers in the indirect
block.

• The 32-bit data pointer may point to an “interesting
block” inside the filesystem (e.g., inode table1, root
ssh private key file, important binary used by root):
this case is the only exploitable condition.

• The 32-bit data pointer may point to an “uninterest-
ing block” inside the filesystem, such as data blocks
from a file already belonging to the attacking user.

• The 32-bit data pointer may point to a block “out-
side” the filesystem (i.e.: block number ≥ number of
blocks on the filesystem). In this case, the corruption
is not exploitable. However, luckily, the filesystem
kernel driver will only return an error for the corre-
sponding data access: subsequent accesses using the
same indirect block, but to another offset inside the
file, can still succeed. This behavior of the driver
allows the attack to work if any of the 1024 cor-
rupted blocks point to an interesting block, greatly
increasing the success probability of the attack.

Let’s assume the corrupted pointer points to an inode
table (exploitable condition). The attacker can then create
(or modify) an inode to be root owned and with the SUID-
bit on, by simply writing to the victim file (which is under
attacker control). The attacker then points the data block
pointers of this inode to the data blocks of a shell, and

1An inode table is an on-disk array of metadata entries (inodes) about
files

finally elevates privileges to root by executing the victim
file, which is now a SUID-root shell (this requires the
inode corresponding to the SUID-root shell to be flushed
from the cache), as shown in Figure 3.

mode
owner

…
direct blocks

indirect blocks

Inode Table
inode ninode 1 …

data 
block

data 
block

…

… data 
block

data 
block

X

…

Figure 3: The attack on the filesystem level works by
corrupting a data block pointer inside an indirect block,
such that instead of an ordinary data block, it points to
the inode table. By writing to the attacker-controlled file,
we can now use the illegitimate redirection to change the
contents of the inode table. Targeting data pointers in the
indirect block instead of those inside the inode allows the
attacker to increase its success probability, while reducing
chances of an irrecoverable error.

We have shown that the R1 is satisfied because corrupt-
ing the indirect block randomly does not result in fatal
errors. R2 is also satisfied because the attacker triggers
the write of the indirect block pointer (by simply writing
enough bytes into the file). We now show that the R3 con-
straint (sufficient probability of creating an exploitable
condition) is also satisfied.

The probability p1 of a single data pointer pointing to
an interesting block is:

p1 =
no interesting blocks

block space size
(1)

And the probability p2 that any of the block size/4
(4 byte block pointers) corrupted pointers point to an
interesting block is:

p2 = 1− (1− p1)
block size/4 (2)

Assuming only the inode table is “interesting” for the
attacker, and a 100 GB filesystem with 4 KB block size,
inode ratio of 16384 bytes per inode (default value in
/etc/mke2fs.conf):



p1 =
no inodes · inode size

block space size ·block size

=
(100 ·230/16384) ·256

232 ·4096
= 100/1048576 ≈ 0.01%

p2 = 1− (1−100/1048576)4096/4 ≈ 9%

(3)

Thus, assuming that the attacker successfully triggers a
one-block data corruption in the indirect inode, a privilege
escalation attack will succeed approximately 9% of the
time. Therefore, we consider R3 satisfied. (Note that
this probability increases with larger filesystems, larger
filesystem block sizes, and smaller inode ratios. Note
also that this probability only applies to the filesystem-
level of the attack: the full attack’s probability is the
multiplication of this probability and that of achieving
the attack primitive through corruption of the underlying
Flash media.)

Finally, we show that caches can be flushed by the at-
tacker (R4). The attacker needs to flush caches at two
distinct times: To overwrite the inode table contents, and
to execute the newly created SUID-root shell. In the first
case, the cached data that should be evicted from cache is
an indirect block, and in the second case, an inode. The
attacker can naturally follow two strategies to this end:
a passive or an active one. Passively, the attacker can
wait for the filesystem to be remounted (e.g., on reboot),
or that enough memory pressure is caused by concurrent
activity on the system to evict the indirect block, and later
the inode, from cache. The active attacker-triggered route
consists in creating memory pressure: the attacker simply
uses a program to allocate enough memory, thereby en-
couraging the OS to evict filesystem metadata from cache.
This is the approach we have taken in our demonstration.
(The effectiveness of this method may vary depending on
VFS and page cache settings, yet, with the default settings
on RHEL 6.7 in our attack, the eviction was effective).

4.3 Exploitation details
We now discuss some additional details that arise during
practical exploitation but are not central to the attack.

First, from the description above it may seem that the
attacker needs to know the data block numbers of a root
shell. Although this can be looked up by reading from
the inode table (through the victim file) and identifying a
shell, e.g., by timestamp or file size, this is quite unlikely
because the portion of the inode table that is readable is
unlikely to contain the root shell. A simpler alternative is
that the attacker starts first by creating a copy of a shell
into the target file, thereby letting the filesystem create
and set the data block pointers, and then sets the SUID

bit and makes the file root-owned by directly writing to
the inode table as in our demonstration.

Second, the attacker needs to be able to identify when
the corruption was successful, i.e., the indirect block
pointer points to somewhere inside an inode table as op-
posed to somewhere else. In practice, this is easy to
accomplish because of the structure of inode tables (for
instance, the marker for regular files with default permis-
sions is repeated every 256 bytes).

Third, the attacker can overwrite either an existing
inode, or a to-be-created file’s inode. We can assume we
are always in the former case if the attacker has no quotas
on the number of files it can create (this is usually the
default setting in most Linux distributions). The attacker
then creates files until the filesystem runs out of inodes (all
inode tables are full), and then after the attack searches
in the filesystem (e.g., using find) a file that is SUID-
root and executes it: this is the way the attack is done in
our demo. In the case where the attacker has a quota on
the number of files it can create, the attack may still be
possible (by deleting files, waiting for the inodes to be
reallocated to another user and creating new files until the
targeted inode is allocated to the attacker), although we
have not attempted this.

Finally, the existing inode might not be accessible to the
attacker through the filesystem (e.g., it is in a subdirectory
that the attacker cannot access). In practice, this simply
means the number of interesting blocks is lower than that
calculated in equation 3.

4.4 Improved attack using double indirect
blocks

A very similar attack can be performed by targeting dou-
ble indirect block corruption instead of indirect block
corruption. Although this attack is slightly more diffi-
cult to explain, it provides a much higher probability of
success and more flexibility to the attacker (full read and
write capability over the entire filesystem: note that this
still leads to privilege escalation by creating SUID-root
files for instance).

Each of the 4-byte pointers in the double indirect block
points to an indirect block. Therefore, corrupting a double
indirect block can lead to the attacker having full control
over the contents of an indirect block. By choosing the
pointers in the indirect block, the attacker can read and
write arbitrary locations in the filesystem.

The exploitable condition here is that one of the point-
ers in the double indirect block point to an attacker-owned
block. For instance, the attacker can create a very large file
on the filesystem (spanning many blocks) to increase the
probability that one of the corrupted pointers is attacker-
owned. Once the corruption occurs, the attacker can verify
that they own the indirect block by filling in the large file



with the address of the filesystem superblock (which is at
a fixed block number and in a recognizable format). The
attacker can then modify the large file’s contents to gain
access to any block on the filesystem through reading and
writing the target file: the location of the write or read
access is controlled by writing to the large file (control of
the indirect block contents), and the content of the access
is controlled by accessing the target file.

Assuming the attacker can create a 100 GB file (a rea-
sonable assumption nowadays) in a 4 KB block size ext3
filesystem, the success probability of this improved attack
is 99.7% (obtained by using equation 2). This is because
the number of interesting blocks is greatly increased.

5 Discussion

5.1 Other filesystems

Although many parts of the attack described in Sec-
tion 4 can be generalized, it remains dependent
on filesystems using indirect blocks, such as ext3,
ext2, and some versions of the Unix File System
(UFS1). The ext4 filesystem uses extents (as NTFS
does as well), essentially describing data blocks as a
set of (starting file block, starting disk block,

number of blocks) tuples. Although it is possible to
have an “extent block” in ext4 (beyond 3 extents, ext4
starts storing extents in a new block outside of the inode,
thereby starting a tree structure), we believe the attack
would have a much lower probability of success because
of the greater structure of extents (i.e., it is much less
likely that a random corruption will not be caught by the
ext4 parser: this is compounded by the fact that ext4 typ-
ically uses a block number space of 48 bits, instead of
ext3’s 32 bits). Therefore, whether the attack would still
be feasible for other filesystems remains to be seen.

5.2 Metadata checksums

In addition, some filesystems such as ZFS and ext4 (but
not ext3) optionally allow for metadata checksums to be
used. Clearly, filesystem metadata checksums, whether
they use cryptographic hashes or not, would significantly
lower the success probability of the attack by allowing the
kernel filesystem driver to detect that filesystem metadata
(e.g., inode or extents) has been corrupted.

Finally, we have experimented with running e2fsck, a
tool checking (and correcting) ext3 filesystem metadata,
after the indirect block corruption occurs. As expected,
e2fsck successfully detects that filesystem metadata is
corrupted, which would allow an administrator to de-
tect this attack. Of course, e2fsck is seldom run, and,
to thwart the attack, it would need to be run before the

attacker gains root privileges and is able to correct the
filesystem metadata.

5.3 Other attack vectors

Any program (in the broad sense) that accesses the SSD,
directly or indirectly, is potentially a target for non-
physical integrity attacks on SSDs. In this paper, we have
considered filesystems, but other attack vectors could ex-
ist.

Unfortunately, because of the restriction given by the
weak primitive P3 that the attacker obtains, together with
the other constraints (R1 to R4) of the attack, we were
unable to find another real-world program that would
likely be exploitable for privilege escalation. We cannot,
however, exclude this may exist and further research is
needed in this area.

Finally, as an analogy to rowhammer and the work
of Gruss et al. [8], it is worth considering whether the
attack presented in this paper could also be exploited re-
motely through browser javascript. Because browsers do
allow writes and reads to the filesystem (albeit indirectly),
through web content local caching, cookies, or use of the
HTML5 storage API, it may be feasible to extend the
attack vector presented here to remote attacks.

5.4 Encryption and Integrity

The use of disk encryption (such as dm-crypt) should fun-
damentally prevent the attack presented here. More pre-
cisely, disk encryption would not prevent the attack from
proceeding at layers 4 to 5 (because the attacker is over-
writing metadata that will be transparently encrypted/de-
crypted by the OS). However, it would make it highly
unlikely that the attacker can gain primitive P3 from weak-
nesses in layers 1 to 3. Indeed, as explained in Section 3,
to bypass the combination of ECC, scrambler, and the re-
striction that Flash pages can only be programmed in one
direction and obtain primitive P3, the attacker needs to
control the data written to disk. However, with the use of
disk encryption, it would be very difficult for the attacker
to be able to do so without knowledge of the encryption
key.

As mentioned earlier, metadata integrity would thwart
the filesystem attack vector we present. However, other at-
tack vectors, if any realistic application-level one is found
in the future, may remain exploitable. We note that cur-
rent filesystem encryption solutions, with the exception of
ZFS, typically do not implement (cryptographic) integrity
of file contents because of performance concerns.



6 Conclusion

In this paper, we demonstrate that an attacker that can
cause random corruption of a chosen ext3 filesystem block
can achieve privilege escalation with high probability.
We also show that, if an undetected corruption of MLC
NAND Flash is possible, then it will most likely result
in the random corruption of a chosen block. In future
work, we plan to further investigate the topic of reliability
mechanisms in Flash to evaluate the feasibility of a full-
system attack.

Acknowledgments

We thank our shepherd Per Larsen and anonymous re-
viewers for their valuable comments and suggestions to
improve the quality of the paper. The research lead-
ing to these results has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation
programme under grant agreement No 644412.

References

[1] Werner Bux and Ilias Iliadis. “Performance of
Greedy Garbage Collection in Flash-based Solid-
state Drives”. In: Perform. Eval. 67.11 (2010),
pages 1172–1186.

[2] Yu Cai, Augata Ghose, Yixin Luo, Ken Mai,
Onur Mutlu, and Erich Haratsch. “Vulnerabili-
ties in MLC NAND Flash Memory Programming:
Experimental Analysis, Exploits, and Mitigation
Techniques”. In: 23rd IEEE International Sympo-
sium on High Performance Computer Architecture.
2017.

[3] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. “Real-
time Garbage Collection for Flash-memory Stor-
age Systems of Real-time Embedded Systems”.
In: ACM Trans. Embed. Comput. Syst. 3.4 (2004),
pages 837–863.

[4] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael
Abu-Ghazaleh. “Jump over ASLR: Attacking
branch predictors to bypass ASLR”. In: Microar-
chitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on. IEEE. 2016, pages 1–
13.

[5] Eran Gal and Sivan Toledo. “Algorithms and Data
Structures for Flash Memories”. In: ACM Comput-
ing Surveys 37.2 (2005), pages 138–163.

[6] Qian Ge, Yuval Yarom, David Cock, and Gernot
Heiser. “A survey of microarchitectural timing at-
tacks and countermeasures on contemporary hard-
ware”. In: Journal of Cryptographic Engineering
(2016), pages 1–27.

[7] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. “Prefetch side-
channel attacks: Bypassing SMAP and kernel
ASLR”. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Se-
curity. ACM. 2016, pages 368–379.

[8] Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. “Rowhammer.Js: A Remote Software-
Induced Fault Attack in JavaScript”. In: Proceed-
ings of the 13th International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721. DIMVA 2016. 2016,
pages 300–321. ISBN: 978-3-319-40666-4.

[9] J. Alex Halderman, Seth D. Schoen, Nadia
Heninger, William Clarkson, William Paul, Joseph
A. Cal, Ariel J. Feldman, and Edward W. Felten.
“Least we remember: Cold boot attacks on encryp-
tion keys”. In: In USENIX Security Symposium.
2008.

[10] Yoongu Kim, Ross Daly, Jeremie Kim, Chris
Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilker-
son, Konrad Lai, and Onur Mutlu. “Flipping Bits in
Memory Without Accessing Them: An Experimen-
tal Study of DRAM Disturbance Errors”. In: Pro-
ceeding of the 41st Annual International Sympo-
sium on Computer Architecuture. ISCA ’14. 2014,
pages 361–372. ISBN: 978-1-4799-4394-4.

[11] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Dif-
ferential power analysis”. In: Advances in cryp-
tology—CRYPTO’99. Springer. 1999, pages 789–
789.

[12] Jae-Duk Lee, Sung-Hoi Hur, and Jung-Dal Choi.
“Effects of floating-gate interference on NAND
flash memory cell operation”. In: IEEE Electron
Device Letters 23.5 (2002), pages 264–266. ISSN:
0741-3106.

[13] Collin Mulliner and Benjamin Michele. “Read It
Twice! A mass-storage-based TOCTTOU attack”.
In: Proceedings of the 6th USENIX Workshop on
Offensive Technologies (WOOT). 2012.

[14] N. Papandreou, T. Parnell, T. Mittelholzer, H.
Pozidis, T. Griffin, G. Tressler, T. Fisher, and C.
Camp. “Effect of Read Disturb on Incomplete
Blocks in MLC NAND Flash Arrays”. In: IEEE
8th International Memory Workshop (IMW). 2016,
pages 1–4.



[15] Nikolaos Papandreou, Thomas Parnell, Haralam-
pos Pozidis, Thomas Mittelholzer, Evangelos Eleft-
heriou, Charles Camp, Thomas Griffin, Gary
Tressler, and Andrew Walls. “Enhancing the Re-
liability of MLC NAND Flash Memory Systems
by Read Channel Optimization”. In: ACM Transac-
tions on Design Automation of Electronic Systems
20.4 (2015), 62:1–62:24.

[16] T. Parnell, N. Papandreou, T. Mittelholzer, and H.
Pozidis. “Modelling of the threshold voltage dis-
tributions of sub-20nm NAND flash memory”. In:
2014 IEEE Global Communications Conference.
2014, pages 2351–2356.

[17] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Pre-
neel, Cristiano Giuffrida, and Herbert Bos. “Flip
Feng Shui: Hammering a Needle in the Software
Stack”. In: USENIX Security Symposium. 2016,
pages 1–18.

[18] Joanna Rutkowska. “Why do I miss Microsoft Bit-
Locker”. In: http: // theinvisiblethings.

blogspot. ch/ 2009/ 01/ why-do-i-miss-

microsoft-bitlocker. html . 2009.

[19] Mark Seaborn and Thomas Dullien. “Exploiting
the DRAM rowhammer bug to gain kernel privi-
leges”. In: BlackHat USA. 2015.

[20] B. Shin, C. Seol, J. S. Chung, and J. J. Kong. “Er-
ror control coding and signal processing for flash
memories”. In: 2012 IEEE International Sympo-
sium on Circuits and Systems. 2012, pages 409–
412.

[21] P. Tanduo, L. Cola, S. Testa, M. Menchise, and A.
Mervic. “Read disturb in flash memories: reliabil-
ity case”. In: Microelectronics Reliability 46.9-11
(2006), pages 1439–1444.

[22] Victor van der Veen, Yanick Fratantonio, Mar-
tina Lindorfer, Daniel Gruss, Clementine Mau-
rice, Giovanni Vigna, Herbert Bos, Kaveh Razavi,
and Cristiano Giuffrida. “Drammer: Determinis-
tic Rowhammer Attacks on Mobile Platforms”. In:
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. CCS
’16. 2016, pages 1675–1689. ISBN: 978-1-4503-
4139-4.

[23] S. Yamada, Y. Hiura, T. Yamane, K. Amemiya,
Y. Ohshima, and K. Yoshikawa. “Degradation
mechanism of flash EEPROM programming after
program/erase cycles”. In: Proceedings of IEEE
International Electron Devices Meeting. 1993,
pages 23–26.

http://theinvisiblethings.blogspot.ch/2009/01/why-do-i-miss-microsoft-bitlocker.html
http://theinvisiblethings.blogspot.ch/2009/01/why-do-i-miss-microsoft-bitlocker.html
http://theinvisiblethings.blogspot.ch/2009/01/why-do-i-miss-microsoft-bitlocker.html

	Introduction
	Background and Related Work
	Hardware-based attacks
	Flash weaknesses
	Flash reliability measures

	Full-system attack
	Attack primitives
	Testbed

	Filesystem-level attack
	Assumptions and Setup
	Attack
	Exploitation details
	Improved attack using double indirect blocks

	Discussion
	Other filesystems
	Metadata checksums
	Other attack vectors
	Encryption and Integrity

	Conclusion

